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Abstract: Symmetry breaking processes in both equilibrium and nonequilibrium systems are associated with critical 
parameters. In the general theory of symmetry breaking transitions, critical parameters have an important role. In 
this article, we present our study of rpm as a critical parameter in chiral symmetry breaking crystallization. The 
random distribution of crystal enantiomeric excess is obtained for various rpm. The results show how the probability 
distribution initially spreads and then develops two peaks in a way similar to that observed in a second-order symmetry 
breaking phase transition. It is also shown that the stochastic kinetic equations that we had proposed for this process 
could reproduce the experimentally observed relation between crystal enantiomeric excess and rpm. 

Introduction 

Processes that can produce states of broken chiral symmetry 
are of particular interest to physics, chemistry, and biology.1-2 

Spontaneous symmetry breaking is a general phenomenon 
known to occur in systems in thermodynamic equilibrium as 
well as systems far from thermodynamic equilibrium.3-5 One 
speaks of "symmetry breaking" in the following sense: though 
the basic interactions, such as spin—spin interaction, and 
processes, such as chemical reactions and diffusion, may be 
symmetric with respect to symmetry operations such as mirror 
reflection, the states generated by these interactions and 
processes need not possess the same symmetries; they may be 
states with "broken symmetries". For example, in a reaction 
that produces chiral products from achiral reactants, the rates 
of reactions for the production of the two enantiomers must be 
identical; nevertheless, if there is chiral autocatalysis, it is 
possible to produce a large enantiomeric excess (ee) in the 
product. In any particular run, the ee could be due to an excess 
of either Z- or d-enantiomer. In fact, in the absence of any chiral 
influences, an excess of I- or d-enantiomer will be produced 
with equal probability. The process is stochastic, not deter­
ministic. Another example is the well-known ferromagnetic 
second-order phase transition that occurs in material such as 
iron. In this case, though the spin—spin interaction is isotropic, 
the cooperative interaction between spins may produce an 
anisotropic state in which the spins point in a particular direction. 
The direction in which the spins will point is random and, in 
the absence of any external magnetic field, each direction occurs 
with equal probability. Depending on the conditions, the degree 
to which symmetry is broken varies. The ultimate goal of 
theories that describe such symmetry breaking transitions is to 
obtain the probability distribution for the states with vary­
ing degrees of broken symmetry. The probability distributions 
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associated with second-order phase transitions are described to 
a good approximation by the Ginsburg—Landau theory (which 
was improved upon by the modern theory of critical phenom­
enon which utilizes the idea of a renormalization group4). 

Theories of symmetry breaking transitions are usually for­
mulated in terms of an "order parameter" ft which is a measure 
of the asymmetry. The order parameter in turn is a function of 
a parameter called the "critical parameter" X. The transition 
from a symmetric to an asymmetric state occurs when the critical 
parameter crosses a threshold value X0. In the case of second-
order phase transitions, the Ginsburg—Landau theory gives the 
probability distribution PQi) of the order parameter at various 
values of the critical parameter X. In the case of breaking of a 
2-fold symmetry, such as mirror reflection symmetry, the 
probability distribution PQi) changes form a one-peak distribu­
tion to a two-peak distribution when X crosses the critical value 
XQ. Our investigation was partly motivated by our interest in 
looking for similarities between second-order phase transitions 
and symmetry breaking in stirred crystallization that is described 
below. The advantage in looking for such similarities is that 
many of the features of the Ginzburg—Landau theory are derived 
from the symmetry properties of the system and are independent 
of the detailed form of the kinetic rates. Thus a Ginzburg— 
Landau type theory for stirred crystallization will be a theory 
of general applicability to all crystallization processes that break 
chiral symmetry, regardless of the particularities of the kinetics. 

For the formulation of a general theory of chiral symmetry 
breaking, the identification and study of an order parameter and 
a critical parameters is necessary. For chiral asymmetry, 
enantiomeric excess is clearly a natural choice for the order 
parameter. In this article, we present our study of stirring rate 
(rpm) as a critical parameter in the breaking of chiral symmetry 
in stirred crystallization of NaC103. We show that the qualita­
tive feature of the experimentally obtained distribution of the 
crystal enantiomeric excess as a function of stirring rpm is 
similar to that seen in second-order symmetry breaking phase 
transitions. 

Regardless of its theoretical implications, our study shows 
how the enantiomeric excess produced in stirred crystallization 
depends on the stirring rpm. We also show that the stochastic 
kinetics that we proposed in an earlier article6 are able to 
reproduce many of the observed qualitative features. 
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Chiral Symmetry Breaking in Stirred Crystallization 

The achiral compound NaC103 crystallizes in enantiomeric 
forms. The optical activity of the enantiomeric crystals enables 
us to easily separate and count the number of /- and rf-crystals. 
In analogy with the usual enantiomeric excess, a crystal 
enantiomeric excess (cee) can be defined as: 

in which Ni and Nd are the number of /- and d-crystals 
respectively. In recent articles, we have reported the phenom­
enon of chiral symmetry breaking in which a large crystal 
enantiomeric excess is produced in stirred crystallization.6-8 

When the stirring rate is zero, the probability distribution for 
(Ni — Nd)Z(Ni + Nd) has a single peak at zero, but when the 
stirring rate is nearly 1000 rpm, the probability distribution has 
two peaks, one near (Ni — Nd)I(Ni + Nd) = +1 and the other 
near (Nt - Nd)/(N, + Nd) = - I . 6 

In this article we present the probability distribution of cee 
for a range of intermediate rpm. The data show that, as the 
rpm is varied, the one-peak probability distribution spreads and 
then develops two peaks just as it does in a second-order 
symmetry breaking phase transition. This result supports the 
notion that rpm can be taken as a critical parameter in the theory 
of symmetry breaking crystallization and that such a theory may 
be similar to the Ginzburg—Landau theory of second-order 
phase transitions. It has been shown that there is a similarity 
between the theory of symmetry breaking nonequilibrium 
transitions and the Ginzburg—Landau theory of second-order 
phase transitions,9,10 but neither of these theories is directly 
applicable to the system under study. 

In our previous study, we proposed a set of stochastic kinetic 
equations with the aim of describing both the variation of 
concentration and stochastic production of /- and rf-crystals in 
stirred crystallization of NaClCh. Numerical solutions obtained 
through a computer code (written in Mathematica) showed that 
this model could reproduce the observed time-variation in 
concentration and the large cee observed in a single run. In 
the present study, we use these stochastic kinetic equations to 
obtain the distribution of cee for different stirring rates by simply 
repeating the computer runs with randomly varying initial 
conditions. The results are then compared with the experimental 
data. For the convenience of the reader, we shall present the 
main aspects of these kinetic equations here while a more 
detailed discussion can be found in ref 6. 

On our model, the kinetics of stirred crystallization consist 
of three main processes: evaporation of the solvent, nucleation, 
and crystal growth. The nucleation and crystal growth changes 
the concentration, which in turn affects the rates of crystalliza­
tion and crystal growth. The nonlinearity of this feedback 
creates interesting situations. In stirred crystallization, the 
nucleation proceeds via two major mechanisms: (i) primary 
nucleation, which may be homogeneous or heterogeneous, and 
(ii) secondary nucleation, a process by which new crystals are 
generated from an existing crystal due to the fluid motion. For 
the rate of primary nucleation, we use two stochastic processes, 
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one for nucleation at the air/solution interface and the other for 
nucleation in the bulk, the average rate in either case being a 
concentration-dependent function. 

Secondary nucleation is the chiral autocatalytic process that 
is responsible for the production of the observed large cee. The 
rate of secondary nucleation, which is the most important aspect 
of the process, is assumed to depend on the surface area of the 
existing crystals and the stirring rate, in addition to supersatu-
ration. Though the exact nature of secondary nucleation is not 
well understood, it has been well established that the rate 
depends on the rate of stirring and supersaturation.11-15 Because 
of the lack of fundamental understanding of the processes of 
secondary nucleation, we could only use the following empirical 
expressions for the rate of secondary nucleation (which is used 
mostly in chemical engineering literature14,16): 

S1 = SO1Ks(C-Cf (2) 

Here 5] is the rate of production of secondary nuclei from an 
/-crystal; s is a parameter which is assumed to be proportional 
to the rpm, CT/ is the total surface area of the /-crystals that can 
generate secondary nuclei, TsT8 is a constant that depends on 
temperature, C is the concentration, Cs is the concentration at 
saturation, and a is an empirical parameter. In our previous 
numerical simulation6 of the process we used the values a = 
2.75, s = 2, and Ks = 5.0 x 10s to obtain a good fit for the 
observed experimental data. It is noteworthy that a non-integer 
value of the exponent a has been commonly used14—perhaps 
an indication that secondary nucleation is a complex process. 
Since the rate of production of secondary nuclei depends on 
the stirring rate s, the cee produced in any particular crystal­
lization depends on rpm. In our experiments, the generation 
of secondary nuclei could be the result of stirrer crystal contact17 

but not necessarily so.11 Indeed it was recently reported that 
chiral symmetry breaking in NaClC>3 crystallization could be 
accomplished through electroconvection18 in which convection 
occurs without a stirrer. Also, we found that a large cee also 
could be produced sometimes by the use of a sonicator (21 kHz) 
in the place of a stirrer. In a total of seven runs only once did 
we find 100% cee. The cee produced by a sonicator were 0.07 
(NL = 84, ND = 98), 0.18 (NL = 83, ND = 58), 0.13 (NL = 
53, ND = 41), 0.27 (NL = 43, ND = 75), 1.00 (NL = 201, 
ND = 0), 0.21 (NL = 42, ND = 65), 0.17 (NL = 43, ND = 
60), in which NL is the number of /-crystals and ND is the 
number of ^-crystals. We have not yet found conditions under 
which large cee could be produced consistently using a 
sonicator. 

The Empirical Relation between Crystal Enantiomeric 
Excess and rpm 

Figure la summarizes the result of 17 unstirred and 63 stirred 
crystallizations done at various rpm. The rpm of the 1 cm stirrer 
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rpm 
Figure 1. 1. (a) The experimentally obtained random distribution of 
crystal enantiomeric excess (cee) (see eq 1) obtained from 63 stirred 
and 17 unstirred crystallizations at various rpm is shown. The data 
show the range over which the cee randomly varies from sample to 
sample for a given rpm. For rpm greater than 600, the cee is always 
nearly one. (b) The total number of crystals counted to sample the cee 
in each crystallization is shown. As can be seen, most of the sample 
sizes were between 100 and 400. 

was stable within ±10. AU the crystallizations were done as 
described in ref 6, the only difference being the careful control 
of the rpm of the stirrer. In each stirred crystallization, we tried 
to count at least 100 crystals, though in a few cases we could 
clearly identify only about 90. For the case of unstirred 
crystallization the total number of crystals in the systems was 
often less than 100 and almost all were counted. As shown in 
Figurelb, in all the stirred crystallizations, the total crystal count 
(NL + ND) in each crystallization ranged from 90 to more than 
600. Figure lb also shows the number of independent stirred 
crystallizations performed at each rpm. 

Crystallization processes in general and symmetry breaking 
crystallization in particular exhibit randomness: for a given set 
of conditions such as rpm, the resulting cee may fluctuate 
randomly over a wide range. It is therefore more appropriate 
to associate a probability distribution, not a specific value, for 
the cee at a given rpm. Since the probability distribution of 
{Ni — Nd)Z(Ni + Nd) is symmetric under the interchange of Ni 
and Nd, its qualitative aspects may be seen with half the data 
points if we look at the distribution of cee = |iV> — Nd\Z(Ni + 
Nd). For diis reason we chose to present the data in terms of 
cee. The probability distribution of (Ni — Nd)Z(Ni + Nd) is 
obtained by simply considering a mirror-reflection of the 
probability distribution of cee about zero. 

The probability distribution of cee may be broad for certain 
rpm and narrow for others. When the crystallization is per­

formed in the absence of stirring, there is the expected statistical 
fluctuations in the cee,19 but in general the standard deviation 
is found to be much larger than what is expected on the basis 
of a binomial distribution. When the solution is stirred, the 
data shown in Figure la indicate that the probability distribution 
of the cee initially spreads with increasing rpm and subsequently 
accumulates near the value of cee = 1. Viewed in terms of the 
probability distribution of (N; — Nd)Z(Ni + Nd), a single-peak 
probability distribution spreads and gradually becomes a 
distribution with two peaks. A similar study in which the stirrer 
was placed at the liquid surface has recently been reported;18 

in this case the rpm was very low, ranging from 0 to 1. 
The observed initial spreading of the probability distribution 

and subsequent development of two sharp peaks is similar to 
the expected qualitative relationship between the probability 
distribution and a critical parameter in a second-order phase 
transition. Such features are general to many symmetry 
breaking transitions, regardless of the details of the dynamics. 
We note, however, that there is not yet a theory that enables us 
to obtain the probability distribution for the cee as a function 
of the rpm. A Ginzburg—Landau type theory for the symmetry 
breaking process is yet to be developed. 

The experimental relationship between the rpm and the crystal 
cee shown in Figure la could be used to test the validity of the 
stochastic kinetic equations that we had proposed for this process 
in an earlier publication.6 With these equations, the stochastic 
crystallization processes can be simulated on the computer using 
appropriate random number generators. Though our kinetic 
model was able to reproduce the observed variation of the 
concentration during stirred crystallization,6 because of the 
complex nature of the kinetics, it is difficult to predict if it will 
indeed reproduce the experimentally observed random distribu­
tion of cee for various stirring rates. 

The results of computer simulation are shown in Figure 2a. 
In the simulation, rpm is assumed to be proportional to a 
parameter s which appears in the rate of secondary nucleation 
as shown in eq 2. (An identical rate equation is used for the 
secondary nucleation of /- and d-crystals.) The random 
distribution of cee produced by the stochastic kinetic equations 
for various values of s is shown in Figure 2a. All other 
parameter values are the same as in ref 6. In accordance with 
experimental observation, in the simulation it is assumed that 
due to nucleation at the air/solution interface, crystals of varying 
sizes enter the system randomly. The computer simulation data 
shown in Figure 2a was obtained by varying the size of "seed" 
crystals from the air/solution interface from 0.03 to 0.07 cm. 
At each rpm 5 or 10 simulations were performed with crystal 
sizes of 0.030, 0.035, 0.040 0.07 cm. AU the crystals were 
introduced into the system when the concentration C of the 
solution reached the value 0.998CS, where C8 is the concentration 
at saturation; in the simulation the concentration reached this 
value at t = 55 min. As can be seen, there is good qualitative 
similarity between the experimentally obtained cee Vs rpm data 
shown in Figure la and the simulation data for cee Vs s shown 
in Figure 2a. For low values of s, the variation in the size of 
the "seed" crystals from the air/solution interface results in a 
large variation of cee, but at higher values of s, the variation in 
"seed" size has almost no effect on the cee. Figure 2b shows 
the total number of crystals generated in each of the simulations. 
For the same range of variation of size of the crystals from the 
air/solution interface (0.03—0.07 cm), it is interesting to note 
that the total number of crystals produced in the simulation 
varies over a wider range when 5 is small. Whether this was 
also true experimentally was difficult to ascertain. We intend 
to investigate this aspect in our future studies. 
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Figure 2. 2. (a) The random distribution of crystal enantiomeric excess 
(cee) (see eq 1) obtained from 60 computer runs for various values of 
the parameter J is shown. The rate of secondary nucleation depends 
on the parameter s as shown in eq 2. The values of all the parameters 
are the same as in ref 6. (For .s = 1.5, 2.0, and 2.5, most of the runs 
produced a cee of nearly 0.98 and hence they overlapped and appear 
as one point.) As can be seen, the random distribution is qualitatively 
similar to that shown in Figure la. One significant difference is the 
range over which the cee fluctuates in the absence of stirring; the 
experimentally observed range is generally larger, (b) The distribution 
of the total number of crystals (NL + ND) obtained in each computer 
simulation is shown for various values of the parameter s (see eq 2). 
The random variation in (NL + ND) is over a wider range for smaller 
values of s. 

Since the parameter 5 is related to the stirring rate, as a first 
approximation, we may assume that it is related to stirrer rpm 
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Figure 3. 3. A quantitative comparison between the data shown in 
Figure la and Figure 2a can be made by relating the parameter.? to the 
rpm by setting rpm = s x 600. The open squares show the average 
cee of the data shown in Figure la at various rpm while the filled 
squares are the average cee of the data shown in Figure 2a at various 
values of s. 

through a multiplicative factor. With this assumption, a 
quantitative comparison of the simulation and experimental data 
for the average cee Vs rpm can be made. The comparison 
shown in Figure 3 is obtained by using the following relation: 
rpm = s x 600. Considering the statistical fluctuations in the 
data, the agreement between the simulation and experiment is 
fairly good. This comparison enables us to relate the parameter 
s to the rpm for the particular stirring conditions. 

Concluding Remarks 

Our study establishes that the stirring rate has the qualitative 
properties of a critical parameter in a second-order phase 
transition. More detailed studies are necessary to reveal the 
differences, if any, between the observed symmetry breaking 
in crystallization and similar symmetry breaking transitions in 
equilibrium and nonequilibrium systems. Whether the existing 
theories of symmetry breaking transitions are adequate to 
describe the chiral symmetry breaking in crystallization remains 
an open question. 
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